
Simple Audio Indexer Documentation
Release 1.0.0

Alireza Rafiei

Dec 28, 2020

Contents:

1 Installation 3
1.1 Native Installation . 3

1.1.1 First step: IBM Credentials . 3
1.1.2 Second Step: Installing sox . 3
1.1.3 Third Step: Installing SAI . 4

1.2 Offline indexing with CMU Pocketsphinx . 4
1.2.1 First step: Installing ffmpeg . 4
1.2.2 Second step: Installing Pocketsphinx . 4
1.2.3 Third step: Installing everything else . 4

1.3 Docker route . 5
1.4 Uninstall . 5

1.4.1 Uninstall natively . 5
1.4.2 Uninstalling CMU Pocketsphinx . 6
1.4.3 Uninstall the Docker version . 6

2 Usage 7
2.1 As a command line script . 7

2.1.1 The help command . 7
2.1.2 Timestamps . 7
2.1.3 Search Commands . 8
2.1.4 Saving & Loading indexed data . 8

2.2 As a Python library . 8
2.2.1 Basics . 9
2.2.2 Indexing . 9
2.2.3 Saving & Loading Indexed data . 9
2.2.4 Timestamps and time regularizations . 10
2.2.5 Searching methods . 10

3 API Reference 11

4 Indices and tables 19

Bibliography 21

Index 23

i

ii

Simple Audio Indexer Documentation, Release 1.0.0

Simple Audio Indexer, (or sai, to be shorter!) is a Python library and command-line tool that enables one to search for
a word or a phrase within an audio file.

Based on that simple core, it generalizes the searching process and lets one to search for multiple queries within
multiple audio files of any size.

It also provides advanced searching abilities by allowing the developer to either use the currently implemented control
structures on the search methods, or for the developer to define her own patterns in regex and match them to contents
of the audio file.

sai is open-source, licensed under Apache v2.0.

Contents: 1

https://github.com/aalireza/SimpleAudioIndexer
https://github.com/aalireza/SimpleAudioIndexer
https://github.com/aalireza/SimpleAudioIndexer/blob/master/LICENSE

Simple Audio Indexer Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Installation

There are two main ways to install sai:

1. If you’re on a Unix(-like) system, say Linux or OS X, then you can do a full/native installation.

2. If you’re on a Windows system, or for some reason don’t want to install natively, you may use the software
within a Docker image.

1.1 Native Installation

You’re going to need to get IBM Watson credentials, install sox and finally install sai.

1.1.1 First step: IBM Credentials

You need a valid username and password for IBM Watson’s Speech to Text API. You may sign up here. After you’ve
created your accout, make an app that uses Speech to text service. Go the settings and save your credentials.

The process has been explained in detail in here

1.1.2 Second Step: Installing sox

You need to install sox on your system. We’ll use sox to process the audio.

If you’re on a Linux system, it should probably be in your distro’s repository. If you’re using Ubuntu (or similar), you
may install by entering the command below in a terminal:

sudo apt-get install sox

If you’re on OS X, then choose the most recent version from the sox ‘s official repo and install it on your system. The
link is here.

If you’re using homebrew, however, you could just enter the command below in a terminal:

3

https://github.com/aalireza/SimpleAudioIndexer
http://sox.sourceforge.net/
https://github.com/aalireza/SimpleAudioIndexer
https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/developercloud/doc/getting_started/gs-credentials.shtml
http://sox.sourceforge.net/
http://sox.sourceforge.net/
https://ubuntu.com
http://sox.sourceforge.net/
https://sourceforge.net/projects/sox/files/sox/
http://brew.sh

Simple Audio Indexer Documentation, Release 1.0.0

brew install sox

1.1.3 Third Step: Installing SAI

You should be installing this library via Python’s pip. Enter the command below in a terminal:

pip install SimpleAudioIndexer

Note that if you wish to run the unit tests, you need to install pytest (and preferably tox as well).

That’s it! If everything was okay, you should be having it on your system. To verify, enter in your terminal:

sai -h

You may also enter in a Python shell:

>>> from SimpleAudioIndexer import SimpleAudioIndexer as sai

If you didn’t see any error messages, then sai is successfully installed!

That’s it! you’ve installed sai successfully!

1.2 Offline indexing with CMU Pocketsphinx

You have an option to use CMU Pocketsphinx as your audio indexer. Note that the quality of Pocketsphinx is at
“pre-alpha” level which means almsot never you’d see a result that’s perfectly accurate.

Only use this option if you don’t want your files being uploaded to Watson’s servers, or you’re on Windows and don’t
want to go in the Docker route.

1.2.1 First step: Installing ffmpeg

You need to install ffmpeg to regularize the encoding of your audio files.

If you’re on Linux, it should probably be in your repositories. You may download ffmpeg on Ubuntu via

sudo apt-get install ffmpeg

If you’re on Mac, you may either go to ffmpeg ‘s website and download it, or install it via homebrew by entering:

brew install ffmpeg

1.2.2 Second step: Installing Pocketsphinx

Use the official guide here to compile it. The guide is relatively straightforward.

Note that unless you know aboslutely what you’re doing, don’t install prepackaged versions e.g. from your distribu-
tions repositories etc.

1.2.3 Third step: Installing everything else

Install sox and sai natively, as it was described previously!

4 Chapter 1. Installation

https://pypi.python.org/pypi/pip
http://doc.pytest.org/en/latest/index.html
https://tox.readthedocs.io/en/latest/
https://github.com/aalireza/SimpleAudioIndexer
https://github.com/aalireza/SimpleAudioIndexer
https://ffmpeg.org/
https://ffmpeg.org/
http://brew.sh
http://cmusphinx.sourceforge.net/wiki/tutorialpocketsphinx#installation
http://sox.sourceforge.net/
https://github.com/aalireza/SimpleAudioIndexer

Simple Audio Indexer Documentation, Release 1.0.0

1.3 Docker route

If you’re on a Windows system, or for some reason don’t want to install natively you may run sai within a docker
container.

We don’t recommend that you choose the docker route if you have a choice to do a native install. Docker containers
are intended to run a single process and will stop as soon as their job is complete.

Our image, however, will run a process that never ends which in turn would enable you to get a terminal in that
container.

We assume that you have docker installed and functional on your system.

Download the Dockerfile.txt from the sai ‘s repository.

Open up a terminal and cd into the directory that contains the docker file. Then, enter the command below:

docker build -t sai-docker .

Note that by running building our docker image, you’d be downloading a lot of intermediary stuff including Ubuntu
and a new build of Python. That means, you should have at least 500MB available.

Assuming the build was successfull, then enter the command below to run it:

docker run sai-docker

Now open up a new terminal and enter the command below:

docker ps -a

Now copy the Container-ID of sai-docker. Then, in that new terminal enter:

docker exec -i -t CONTAINER-ID /bin/bash

Right now you should be having shell access within sai-docker container and should be able to run sai in the command
line or import it in a python REPL.

To stop the docker process, exit the shell you’ve got in the container and open up a new terminal in your system and
enter:

docker rm -rf CONTAINER-ID

1.4 Uninstall

If for any reason you wish to install sai, fear not! It’s quite simple.

1.4.1 Uninstall natively

If you’ve installed sai natively on your system, then you may just open up a command line and enter:

pip uninstall SimpleAudioIndexer

Depending on your operating system, uninstallation method of sox would be different. If you’re on Ubuntu, you may
just enter:

1.3. Docker route 5

https://github.com/aalireza/SimpleAudioIndexer
https://docker.org
https://docker.org
https://docker.org
https://docker.org
https://raw.githubusercontent.com/aalireza/SimpleAudioIndexer/master/Dockerfile.txt
https://github.com/aalireza/SimpleAudioIndexer
https://ubuntu.com
https://github.com/aalireza/SimpleAudioIndexer
https://github.com/aalireza/SimpleAudioIndexer
http://sox.sourceforge.net/

Simple Audio Indexer Documentation, Release 1.0.0

sudo apt-get remove sox && sudo apt-get autoremove

If you were on OS X and used homebrew, you may open up a terminal and enter:

brew uninstall sox

If however you’ve installed sox via their repo, then it’d be just a simple drag and drop wherever you’ve installed it!

That’s it! You’ve uninstalled sai successfully!

1.4.2 Uninstalling CMU Pocketsphinx

You may uninstall sox and sai like it was described above. For uninstalling ffmpeg, proceed similarly to sox i.e. if
you’re on an Ubuntu

:: sudo apt uninstall ffmpeg

or on Mac using homebrew

brew uninstall ffmpeg

To uninstall CMU Sphinx, go into the directory which you’ve compiled it and enter:

make uninstall

And then remove that directory.

1.4.3 Uninstall the Docker version

If you’ve installed sai from the dockerfile.txt found at the repo, then you may just open up a terminal and enter:

docker rmi sai-docker

Note an Ubuntu image would be installed alongside sai-docker as well. You may remove that similarly.

6 Chapter 1. Installation

http://brew.sh
https://github.com/aalireza/SimpleAudioIndexer
http://sox.sourceforge.net/
https://github.com/aalireza/SimpleAudioIndexer
https://ffmpeg.org/
http://sox.sourceforge.net/
http://brew.sh
https://github.com/aalireza/SimpleAudioIndexer
https://raw.githubusercontent.com/aalireza/SimpleAudioIndexer/master/Dockerfile.txt

CHAPTER 2

Usage

There are basically two ways to use sai:

1. As a command line script.

2. As a library for developers. (recommended)

2.1 As a command line script

Note that currently the command-line script is very limited in its functionality and not all the available methods have
been implemented for the command-line interface.

We assume you have sai installed and have IBM Watson’s credentials ready (if not, you may read the installation guide
here).

2.1.1 The help command

Open up a terminal. Enter:

sai -h

The result would be a list of all the implemented commands for the command-line script.

2.1.2 Timestamps

You can either choose to use Watson as your speech to text engine or Pocketsphinx.

Say your choice is Watson, then enter the command below (replace USERNAME and PASSWORD with your Watson
credentials) and replace SRC_DIR with the absolute path to the directory in which your audio files are located):

sai --mode "ibm" --username_ibm USERNAME --password_ibm PASSWORD --src_dir SRC_DIR --
→˓timestamps

7

https://github.com/aalireza/SimpleAudioIndexer
https://github.com/aalireza/SimpleAudioIndexer
./installation.html

Simple Audio Indexer Documentation, Release 1.0.0

The command above should give you the timestamps of all the words within the audio.

Note that the switches –mode and –src_dir are required for anything you want to do. If your choice of mode is ibm,
then the switches username_ibm and password_ibm would be required as well.

There are some optional switches as well. You’ve used –timestamps to get timestamps, however you may use –search
if you want to search for something, or –regexp to search with regular expressions etc.

For the rest of this tutorial we assume that your choice of mode is ibm. If your choice is cmu, then you no longer need
to ibm switches, but everything else remains the same.

2.1.3 Search Commands

Say you want to search for the string “apple”, then your command would be:

sai --mode ibm --src_dir SRC_DIR --username_ibm USERNAME --password_ibm PASSWORD --
→˓search "apple"

You may also search for a regex pattern via the switch –regexp:

sai --mode ibm --src_dir SRC_DIR --username_ibm USERNAME --password_ibm PASSWORD --
→˓regexp " [a-z][a-z] "

Note that you cannot simultaneously use -s and -r!

The default language is American English. If you want to use another language/accent, then use the switch –language.
For the list of all models, see the reference here.

Note that –language switch doesn’t work for cmu mode.

2.1.4 Saving & Loading indexed data

The last thing worth mentioning, is that, say your audio files are big enough that you don’t want to spend time indexing
them every time you run the script, then you should use the switch –save-data followed by an absolute path to a file
into which the indexed data would be written. If such a file doesn’t exist, it’ll be created.

For example, say I want to write the indexed data into my Documents directory with the name indexed_data. Then the
command would be:

sai --mode ibm --src_dir SRC_DIR --username_ibm USERNAME --password_ibm PASSWORD --
→˓save-data ABSOLUTE_PATH_TO_A_FILE_TO_BE_CREATED/indexed_data

Next time that I want to search the those audio files, I’ll enter:

sai --mode ibm --load_data ABOSLUTE_PATH_INDEXED_DATA --search "stuff"

Note that whenever you’re loading your data, you no longer have to enter your username and password and src_dir,
but you still need to specify your mode.

2.2 As a Python library

We assume you have sai installed and have IBM Watson’s credentials ready (if not, you may read the installation guide
here).

8 Chapter 2. Usage

./reference.html
https://github.com/aalireza/SimpleAudioIndexer
./installation.html

Simple Audio Indexer Documentation, Release 1.0.0

2.2.1 Basics

You should put your audio files inside a single directory. Where ever we say SRC_DIR, you should replace it via the
absolute path of that directory. You should also replace USERNAME and PASSWORD with your Watson credentials.

Note that the format of your audio files must be wav (Specific encodings wont matter). However if your file is not
wav, it’ll be ignored.

Also note that, your audio files must end in .wav. While some operating system allow you to store files without explicit
format decleration, it won’t always be reliable to look at the header of the audio files or guess the format.

There’s one class that you need to import:

>>> from SimpleAudioIndexer import SimpleAudioIndexer as sai

Afterwards, you should create an instance of sai

>>> indexer = sai(mode="ibm", src_dir="SRC_DIR", username_ibm="USERNAME", password_
→˓ibm="PASSWORD")

Note that if you choose your mode to be cmu, then you no longer have to provide username and passwords of your
Watson account.

2.2.2 Indexing

Now you may index all the available audio files by calling index_audio method:

>>> indexer.index_audio()

This method automatically created two directories filtered and staging within your src_dir to handle intermediarry
files.

Also, you could also just index a particular audio file. Say you only wish to index SRC_DIR/target.wav, then:

>>> indexer.index_audio(basename=target.wav)

For more information on all arguments of this method (including other languages or accuracy etc.) read the API
reference here

2.2.3 Saving & Loading Indexed data

index_audio method, transfers wav files into the filtered directory. Then, checks the size of the audio file and splits it
if they are sufficiently large and moves them to staging directory and finally reads and sends a request to Watson.

Say you’ve done all of that and the next time you don’t want to make that request. Then save your data:

>>> indexer.save_indexed_audio("{}/indexed_audio".format(indexer.src_dir))

Afterwards, all the timestamps of the audios would be saved in SRC_DIR/indexed_audio.txt. Next time, instead of
calling index_audio method, do:

>>> indexer.load_indexed_audio("{}/indexed_audio.txt".format(indexer.src_dir))

2.2. As a Python library 9

./reference.html#SimpleAudioIndexer.SimpleAudioIndexer.index_audio

Simple Audio Indexer Documentation, Release 1.0.0

2.2.4 Timestamps and time regularizations

After you’ve indexed audio, the timestamps for each word would be saved within a private attribute. They should not
be accessed since if the audio files were large and they were splitted, then the timing won’t be correct.

The time corrected/regularized however can be accessed via get_timestamps method. Say there are two audio files in
SRC_DIR called audio.wav and another.wav. Then the timestamps would look something like below:

>>> print(indexer.get_timestamps())
{"audio.wav": [["hello", 0.01, 0.05], ["how", 0.05, 0.08], ["are", 0.08, 0.11],
["you", 0.11, 0.14]], "another": [["yo", 0.01, 0.02]]}

Basically, the output is a dictionary whose keys are the audio files and the outputs are a list of word blocks. A word
block is a list whose first element is a word, second element is the starting second and the third (and last) element is
the ending second of that word.

2.2.5 Searching methods

Now, search methods all use the get_timestamps internally. Say after indexing, you finally wanted to do a search.

You could have a searching generator:

>>> searcher = indexer.search_gen(query="hello")
If you're on python 2.7, instead of below, do print searcher.next()
>>> print(next(searcher))
{"Query": "hello", "File Name": "audio.wav", "Result": [(0.01, 0.05)]

So in the example above, SRC_DIR/audio.wav is at least 0.14 seconds long and contains 4 words: “hello”, “how”,
“are”, “you”.

Now there are quite a few more arguments implemented for search_gen. Say you wanted your search to be case
sensitive (by default it’s not). Or, say you wanted to look for a phrase but there’s a timing gap and the indexer didn’t
pick it up right, you could specify timing_error. Or, say some word is completely missed, then you could specify
missing_word_tolerance etc.

For a full list, see the API reference here

You could also call search_all method to have search for a list of queries within all the audio files:

>>> print(indexer.search_all(queries=["hello", "yo"]))
{"hello": {"audio.wav": [(0.01, 0.05)]}, {"yo": {"another.wav": [(0.01, 0.02)]}}}

The same arguments that were applicable for search_gen are applicable for search_all.

Finally, you could do a regex search!

>>> print(indexer.search_regexp(pattern=" [a-z][a-z][a-z] ")
{"are": {"audio.wav": [(0.08, 0.11)]}, "how": {"audio.wav": [(0.05, 0.08)]},
"you": {"audio.wav": [(0.11, 0.14)]}}

Note that anything that can be done via the implemented word-based control structures over search_gen can be done
via regex pattern matching (albeit maybe nontrivial to write the correct pattern).

The open ended nature of search_regexp is intended to compliment search_gen.

That’s it! You know enough to get started. I recemmend taking a look at API reference here to learn more about other
methods that have been implemented.

10 Chapter 2. Usage

./reference.html#SimpleAudioIndexer.SimpleAudioIndexer.search_gen
./reference.html

CHAPTER 3

API Reference

class SimpleAudioIndexer.SimpleAudioIndexer(src_dir, mode, user-
name_ibm=None, password_ibm=None,
ibm_api_limit_bytes=100000000,
verbose=False,
needed_directories=set([’filtered’, ’stag-
ing’]))

Indexes audio and searches for a string within it or matches a regex pattern.

Audio files that are intended to be indexed should be in wav format, placed in a same directory and the absolute
path to that directory should be passed as src_dir upon initialization.

Call the method index_audio (which results in calling index_audio_ibm or index_audio_cmu based on the given
mode) prior to searching or accessing timestamps, unless you have saved the data for your previously indexed
audio (in that case, load_indexed_audio method must be used)

You may see timestamps of the words that have been indexed so far sorted by audio files and the time of their
occurance, by calling the method get_audio_timestamps.

You may saved the indexed audio data (which is basically just the time- regularized timestamps) via
save_indexed_audio method and load it back via load_indexed_audio

Do exhustive search with the method search_all, do iterative search with the method search_gen or do regex
based search with the method search_regexp

For more information see the docs and read usage guide.

Attributes

mode [{“ibm”, “cmu”}] specifying whether speech to text engine is IBM’s Watson or Pocket-
sphinx.

src_dir [str] Absolute path to the source directory of audio files such that the absolute path of
the audio that’ll be indexed would be src_dir/audio_file.wav

verbose [bool, optional] True if progress needs to be printed. Default is False.

ibm_api_limit_bytes [int, optional] It holds the API limitation of Watson speech api http ses-
sionless which is 100Mbs. Default is 100000000.

11

Simple Audio Indexer Documentation, Release 1.0.0

Methods

get_mode()
get_username_ibm()
set_username_ibm()
get_password_ibm()
set_password_ibm()
get_verbosity()
set_verbosity()
get_timestamps() Returns a corrected dictionary whose key is the original file name and

whose value is a list of words and their beginning and ending time. It ac-
counts for large files and does the timing calculations to return the correct
result.

get_errors() Returns a dictionary that has all the erros that have occured while process-
ing the audio file. Dictionary contains time of error, file that had the error
and the actual error.

_in-
dex_audio_ibm(name=None,
continuous=True,
model=”en-
US_BroadbandModel”,

word_confidence=True, word_alternatives_threshold=0.9, profan-
ity_filter_for_US_results=False) Implements a searching-suitable interface
for the Watson API

_in-
dex_audio_cmu(name=None)

Implements an experimental interface for the CMu Pocketsphinx

index_audio(*args,
**kwargs)

Returns a corrected dictionary whose key is the original file name and
whose value is a list of words and their beginning and ending time. It ac-
counts for large files and does the timing calculations to return the correct
result.

save_indexed_audio(indexed_audio_file_abs_path)
load_indexed_audio(indexed_audio_file_abs_path)
search_gen(query, au-
dio_basename=None,
case_sensitive=False,

subsequence=False, supersequence=False, timing_error=0.0, ana-
gram=False, missing_word_tolerance=0) A generator which returns a
valid search result at each iteraiton.

search_all(queries, au-
dio_basename=None,
case_sensitive=False,

subsequence=False, supersequence=False, timing_error=0.0, ana-
gram=False, missing_word_tolerance=0) Returns a dictionary of all
results of all of the queries for either all of the audio files or the
audio_basename.

search_regexp(pattern, au-
dio_basename=None)

Returns a dictionary of all results which matched pattern for either all of
the audio files or the auio_basename

get_mode(self)
Returns whether the instance is initialized with ibm or cmu mode.

Returns

str

get_username_ibm(self)

Returns

str, None Returns str if mode is ibm, else None

set_username_ibm(self, username_ibm)

Parameters

12 Chapter 3. API Reference

Simple Audio Indexer Documentation, Release 1.0.0

username_ibm [str]

Raises

Exception If mode is not ibm

get_password_ibm(self)

Returns

str, None Returns str if mode is ibm, else None

set_password_ibm(self, password_ibm)

Parameters

password_ibm [str]

Raises

Exception If mode is not ibm

get_verbosity(self)
Returns whether the instance is initialized to be quite or loud while processing audio files.

Returns

bool True for being verbose.

set_verbosity(self, pred)

Parameters

pred [bool]

get_timestamps(self)
Returns a dictionary whose keys are audio file basenames and whose values are a list of word blocks.
In case the audio file was large enough to be splitted, it adds seconds to correct timing and in case the
timestamp was manually loaded, it leaves it alone.

Returns

{str: [[str, float, float]]}

get_errors(self)
Returns a dictionary containing any errors while processing the audio files. Works for either mode.

Returns

{(float, str): any} The return is a dictionary whose keys are tuples whose first elements are
the time of the error and whose second values are the audio file’s name. The values of the
dictionary are the actual errors.

index_audio(self, *args, **kwargs)
Calls the correct indexer function based on the mode.

If mode is ibm, _indexer_audio_ibm is called which is an interface for Watson. Note that some of the
explaination of _indexer_audio_ibm’s arguments is from [1]

If mode is cmu, _indexer_audio_cmu is called which is an interface for PocketSphinx Beware that the
output would not be sufficiently accurate. Use this only if you don’t want to upload your files to IBM.

Parameters

mode [{“ibm”, “cmu”}]

13

Simple Audio Indexer Documentation, Release 1.0.0

basename [str, optional] A specific basename to be indexed and is placed in src_dir e.g
audio.wav.

If None is selected, all the valid audio files would be indexed. Default is None.

replace_already_indexed [bool] True, To reindex some audio file that’s already in the
timestamps.

Default is False.

continuous [bool] Valid Only if mode is ibm

Indicates whether multiple final results that represent consecutive phrases separated by
long pauses are returned. If true, such phrases are returned; if false (the default), recogni-
tion ends after the first end-of-speech (EOS) incident is detected.

Default is True.

model [{]

‘ar-AR_BroadbandModel’, ‘en-UK_BroadbandModel’ ‘en-
UK_NarrowbandModel’, ‘en-US_BroadbandModel’, (the de-
fault) ‘en-US_NarrowbandModel’, ‘es-ES_BroadbandModel’,
‘es-ES_NarrowbandModel’, ‘fr-FR_BroadbandModel’, ‘ja-
JP_BroadbandModel’, ‘ja-JP_NarrowbandModel’, ‘pt-BR_BroadbandModel’,
‘pt-BR_NarrowbandModel’, ‘zh-CN_BroadbandModel’, ‘zh-
CN_NarrowbandModel’

}

Valid Only if mode is ibm

The identifier of the model to be used for the recognition

Default is ‘en-US_BroadbandModel’

word_confidence [bool] Valid Only if mode is ibm

Indicates whether a confidence measure in the range of 0 to 1 is returned for each word.

The default is True. (It’s False in the original)

word_alternatives_threshold [numeric] Valid Only if mode is ibm

A confidence value that is the lower bound for identifying a hypothesis as a possible word
alternative (also known as “Confusion Networks”). An alternative word is considered if
its confidence is greater than or equal to the threshold. Specify a probability between 0
and 1 inclusive.

Default is 0.9.

profanity_filter_for_US_results [bool] Valid Only if mode is ibm

Indicates whether profanity filtering is performed on the transcript. If true, the service
filters profanity from all output by replacing inappropriate words with a series of asterisks.

If false, the service returns results with no censoring. Applies to US English transcription
only.

Default is False.

Raises

OSError Valid only if mode is cmu.

If the output of pocketsphinx command results in an error.

14 Chapter 3. API Reference

Simple Audio Indexer Documentation, Release 1.0.0

References

Else if mode is cmu, then _index_audio_cmu would be called:

[1]

save_indexed_audio(self, indexed_audio_file_abs_path)
Writes the corrected timestamps to a file. Timestamps are a python dictionary.

Parameters

indexed_audio_file_abs_path [str]

load_indexed_audio(self, indexed_audio_file_abs_path)

Parameters

indexed_audio_file_abs_path [str]

search_gen(self, query, audio_basename=None, case_sensitive=False, subsequence=False, superse-
quence=False, timing_error=0.0, anagram=False, missing_word_tolerance=0)

A generator that searches for the query within the audiofiles of the src_dir.

Parameters

query [str] A string that’ll be searched. It’ll be splitted on spaces and then each word gets
sequentially searched.

audio_basename [str, optional] Search only within the given audio_basename.

Default is None

case_sensitive [bool, optional] Default is False

subsequence [bool, optional] True if it’s not needed for the exact word be detected and
larger strings that contain the given one are fine.

If the query is a sentences with multiple words, it’ll be considered for each word, not
the whole sentence.

Default is False.

supersequence [bool, optional] True if it’s not needed for the exact word be detected and
smaller strings that are contained within the given one are fine.

If the query is a sentences with multiple words, it’ll be considered for each word, not
the whole sentence.

Default is False.

anagram [bool, optional] True if it’s acceptable for a complete permutation of the word
to be found. e.g. “abcde” would be acceptable for “edbac”.

If the query is a sentences with multiple words, it’ll be considered for each word, not
the whole sentence.

Default is False.

timing_error [None or float, optional] Sometimes other words (almost always very
small) would be detected between the words of the query. This parameter defines
the timing difference/tolerance of the search.

Default is 0.0 i.e. No timing error is tolerated.

missing_word_tolerance [int, optional] The number of words that can be missed within
the result. For example, if the query is “Some random text” and the tolerance value
is 1, then “Some text” would be a valid response. Note that the first and last words

15

Simple Audio Indexer Documentation, Release 1.0.0

cannot be missed. Also, there’ll be an error if the value is more than the number of
available words. For the example above, any value more than 1 would have given an
error (since there’s only one word i.e. “random” that can be missed)

Default is 0.

Yields

{“File Name”: str, “Query”: query, “Result”: (float, float)} The result of the search is
returned as a tuple which is the value of the “Result” key. The first element of the tuple
is the starting second of query and the last element is the ending second of query

Raises

AssertionError If missing_word_tolerance value is more than the total number of words
in the query minus 2 (since the first and the last word cannot be removed)

search_all(self, queries, audio_basename=None, case_sensitive=False, subsequence=False, super-
sequence=False, timing_error=0.0, anagram=False, missing_word_tolerance=0)

Returns a dictionary of all results of all of the queries for all of the audio files. All the specified parameters
work per query.

Parameters

queries [[str] or str] A list of the strings that’ll be searched. If type of queries is str, it’ll
be insterted into a list within the body of the method.

audio_basename [str, optional] Search only within the given audio_basename.

Default is None.

case_sensitive [bool] Default is False

subsequence [bool, optional] True if it’s not needed for the exact word be detected and
larger strings that contain the given one are fine.

If the query is a sentences with multiple words, it’ll be considered for each word, not
the whole sentence.

Default is False.

supersequence [bool, optional] True if it’s not needed for the exact word be detected and
smaller strings that are contained within the given one are fine.

If the query is a sentences with multiple words, it’ll be considered for each word, not
the whole sentence.

Default is False.

anagram [bool, optional] True if it’s acceptable for a complete permutation of the word
to be found. e.g. “abcde” would be acceptable for “edbac”.

If the query is a sentences with multiple words, it’ll be considered for each word, not
the whole sentence.

Default is False.

timing_error [None or float, optional] Sometimes other words (almost always very
small) would be detected between the words of the query. This parameter defines
the timing difference/tolerance of the search.

Default is 0.0 i.e. No timing error is tolerated.

missing_word_tolerance [int, optional] The number of words that can be missed within
the result. For example, if the query is “Some random text” and the tolerance value
is 1, then “Some text” would be a valid response. Note that the first and last words

16 Chapter 3. API Reference

Simple Audio Indexer Documentation, Release 1.0.0

cannot be missed. Also, there’ll be an error if the value is more than the number of
available words. For the example above, any value more than 1 would have given an
error (since there’s only one word i.e. “random” that can be missed)

Default is 0.

Returns

search_results [{str: {str: [(float, float)]}}] A dictionary whose keys are queries and
whose values are dictionaries whose keys are all the audiofiles in which the query is
present and whose values are a list whose elements are 2-tuples whose first element
is the starting second of the query and whose values are the ending second. e.g.
{“apple”: {“fruits.wav” : [(1.1, 1.12)]}}

Raises

TypeError if queries is neither a list nor a str

search_regexp(self, pattern, audio_basename=None)
First joins the words of the word_blocks of timestamps with space, per audio_basename. Then matches
pattern and calculates the index of the word_block where the first and last word of the matched result
appears in. Then presents the output like search_all method.

Note that the leading and trailing spaces from the matched results would be removed while determining
which word_block they belong to.

Parameters

pattern [str] A regex pattern.

audio_basename [str, optional] Search only within the given audio_basename.

Default is False.

Returns

search_results [{str: {str: [(float, float)]}}] A dictionary whose keys are queries and
whose values are dictionaries whose keys are all the audiofiles in which the query is
present and whose values are a list whose elements are 2-tuples whose first element
is the starting second of the query and whose values are the ending second. e.g.
{“apple”: {“fruits.wav” : [(1.1, 1.12)]}}

17

Simple Audio Indexer Documentation, Release 1.0.0

18 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

Simple Audio Indexer Documentation, Release 1.0.0

20 Chapter 4. Indices and tables

Bibliography

[1] : https://ibm.com/watson/developercloud/speech-to-text/api/v1/

21

https://ibm.com/watson/developercloud/speech-to-text/api/v1/

Simple Audio Indexer Documentation, Release 1.0.0

22 Bibliography

Index

G
get_errors() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13
get_mode() (SimpleAudioIndexer.SimpleAudioIndexer

method), 12
get_password_ibm() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13
get_timestamps() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13
get_username_ibm() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 12
get_verbosity() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13

I
index_audio() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13

L
load_indexed_audio() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 15

S
save_indexed_audio() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 15
search_all() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 16
search_gen() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 15
search_regexp() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 17
set_password_ibm() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13
set_username_ibm() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 12
set_verbosity() (SimpleAudioIn-

dexer.SimpleAudioIndexer method), 13
SimpleAudioIndexer (class in SimpleAudioIn-

dexer), 11

23

	Installation
	Native Installation
	First step: IBM Credentials
	Second Step: Installing sox
	Third Step: Installing SAI

	Offline indexing with CMU Pocketsphinx
	First step: Installing ffmpeg
	Second step: Installing Pocketsphinx
	Third step: Installing everything else

	Docker route
	Uninstall
	Uninstall natively
	Uninstalling CMU Pocketsphinx
	Uninstall the Docker version

	Usage
	As a command line script
	The help command
	Timestamps
	Search Commands
	Saving & Loading indexed data

	As a Python library
	Basics
	Indexing
	Saving & Loading Indexed data
	Timestamps and time regularizations
	Searching methods

	API Reference
	Indices and tables
	Bibliography
	Index

